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Automatic Detection of Anatomical Landmarks
in Uterine Cervix Images

Hayit Greenspan*, Shiri Gordon, Gali Zimmerman, Shelly Lotenberg, Jose Jeronimo, Sameer Antani, and
Rodney Long

Abstract—The work focuses on a unique medical repository
of digital cervicographic images (“Cervigrams”) collected by the
National Cancer Institute (NCI) in longitudinal multiyear studies.
NCI, together with the National Library of Medicine (NLM),
is developing a unique web-accessible database of the digitized
cervix images to study the evolution of lesions related to cervical
cancer. Tools are needed for automated analysis of the cervigram
content to support cancer research. We present a multistage
scheme for segmenting and labeling regions of anatomical interest
within the cervigrams. In particular, we focus on the extraction
of the cervix region and fine detection of the cervix boundary;
specular reflection is eliminated as an important preprocessing
step; in addition, the entrance to the endocervical canal (the “os”),
is detected. Segmentation results are evaluated on three image sets
of cervigrams that were manually labeled by NCI experts.

Index Terms—Cervical cancer, curvature features, image seg-
mentation, landmark extraction, medical image analysis.

I. INTRODUCTION

T HIS work is part of an ongoing effort towards the cre-
ation of a content-based image retrieval (CBIR) system

for cervicographic images, otherwise termed “cervigrams.”
Cervigrams are currently being investigated as a means for
detection, diagnosis and basic research of cervical cancer.
Automated cervigram analysis tools are needed for these tasks.
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Fig. 1. An example cervigram: the cervix boundary, the os, and SR artifacts
are marked.

We start with an introduction to the clinical perspectives on
cervicography and proceed to the image analysis challenges.

A. Cervicography in Cervical Cancer Research

Cervical cancer, the second most common cancer affecting
women worldwide and the most common in developing coun-
tries, can be cured in almost all patients, if detected by high
quality screening, and treated. However, cervical cancer in-
cidence and mortality remain high in resource-poor regions,
where high quality Pap (cytology) screening programs often
cannot be maintained because of inherent complexity and cost.
An alternative method of cervical cancer screening, called
visual inspection with acetic acid, is based on color change
of cervix tissues when exposed to acetic acid. This inexpen-
sive method helps to detect abnormal cells that turn white
(acetowhite) following the application of 3%–5% acetic acid
[1]. An analogous photographic method that permits archive
and study is cervicography. In this method the uterine cervix
is photographed with a special fixed-focus 35-mm camera
equipped with a ring flash that is used to provide enhanced
illumination of the target region. Fig. 1 shows an example
cervicographic image. For epidemiologic investigations, a
cervigram resembles a low-magnification colposcopic image.
When additional screening techniques are available, visual
methods like cervicography may be used at the initial ex-
amination level, and patients with indicators of concern are
then referred to colposcopic and/or Pap smear screening, or to
treatment. Alternatively, DNA testing for a major risk factor for
cervical cancer, human papillomavirus (HPV) infection, could
be used as a primary screen, with visual triage.

The National Cancer Institute (NCI) has collected a sub-
stantial amount of biomedical information related to the
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occurrence and evolution of uterine cervical cancer in lon-
gitudinal multiyear studies carried out in Guanacaste, Costa
Rica, and in the United States. The Guanacaste Project is an
intensive, seven-year population-based cohort study of human
papillomavirus (HPV) infection and cervical neoplasia among
10 000 women in Guanacaste, where the rates of cervical
cancer are perennially high. The ASCUS-LSIL Triage Study
(ALTS), conducted in the United States, is a randomized
clinical trial of management strategies for minor cervical cyto-
logical abnormalities, with two years of semi-annual follow-up.
State-of-the-art visual, microscopic, and molecular screening
tests are being used in these studies to examine the origins of
cervical pre-cancer/cancer. The Guanacaste and ALTS projects
now have a variety of subprojects based on collected specimens,
visual images, and outcomes. NCI is examining several poten-
tially important etiologic co-factors, which may contribute to
cervical cancer risk. Most ambitiously, over 30 000 cervical
cells and 30 000 plasma specimens are being tested for HPV
DNA and serologic markers among 5000 women, to determine
type-specific HPV DNA types and variants (there are over 40
types of cervical HPV). Data collected included patient age,
sexual/reproductive history, laboratory test results; including
Pap smear and cytology, and 100 000 cervicographic images in
the form of 35-mm color slides, as well as medical classifica-
tions for the cervigrams into diagnostic categories [2]–[4]. NCI,
NLM and the American Society for Colposcopy and Cervical
Pathology (ASCCP) have formed the NIH-ASCCP Research
Group that plans to use these images for the training and
education of colposcopic practitioners [5]. A major long-term
objective is to develop a unique web-accessible database of
digitized cervix images for investigating the role of HPV in the
development of cervical cancer and its intraepithelial precursor
lesions in women. This work is a collaboration within the Na-
tional Institutes of Health (NIH) between NCI and the National
Library of Medicine (NLM) [6].

B. Automated Cervigram Analysis

The images within the NIH archive are unlabeled and have no
attached annotation. Automated analysis of the cervigram im-
ages is thus needed in order to extract visual information from
each individual image, across the large set of archived images.
The extracted information can then be used to support cervical
cancer research, to assist in training of experts and to enable
future computerized cancer screening. In this work we present
initial automated capabilities of landmark detection and extrac-
tion within the cervigram archive. We start by describing the in-
dividual cervigram image and describing the challenges of the
landmark detection task.

A typical cervigram is presented in Fig. 1. The cervix re-
gion which is the main region of interest within the cervigram,
is located in the central part of the image, with surrounding
vaginal walls and parts of clinical equipment, such as speculum
or swab, intruding in the image. A dark surrounding frame can
be seen containing lines and text that are overlaid on the image
at time of the photographic development. The cervix region is
defined by the cervix boundary. Automated detection of the
cervix boundary defines the region of medical and anatomical
interest within the cervigram and enables further analysis to

focus within the cervix region itself. An additional important
landmark is the os which is the opening of the cervix. The shape,
size and color of the os may vary strongly among cervigrams,
but it is usually clearly visible. The os landmark is used by
the medical experts as a reference point for interpreting cervix
anatomy.

Automated analysis of cervigrams is a very complex and chal-
lenging task due to a variety of factors. First, the cervigram ac-
quisition process involves the use of a strong camera flash in
order to achieve good illumination of the convex shape of the
cervix. Several artifacts are generated during this acquisition
process, including a strong shading artifact that causes an inho-
mogeneous appearance within and across the tissues, as well as
a specular reflection artifact that interferes with the automated
analysis. Second, a large variability is present within the cervi-
gram archive: the image acquisition setup is not constant. The
viewing angle varies significantly across the images, causing the
cervix region to differ in intensity and shape from one image to
another. In addition, the physical scene that is imaged has in-
trinsic variability. For example, in different patients the cervix
is not the same size, and additional noncervix tissues or med-
ical instruments may exist. A third significant difficulty is the
variability of cervix tissue content within the images, as not all
defined tissue types are present in each cervigram image. Fi-
nally, the narrow dynamic range of colors and the lack of dis-
tinct boundaries between tissue regions, introduce additional,
challenging image analysis and data classification tasks.

Initial studies can be found on the analysis of individual
cervigram images, or the higher-resolution colposcopic images.
Most of these studies are semi-automated, requiring the user
to mark regions of interest on various cervix tissues [7]–[9].
Features such as color [9], texture [8], and shape [7] are then
extracted. Based on these features the different regions are
associated with different cervix tissues using various classi-
fiers, such as neural networks [7] or the minimum distance
classifier [8]. Additional works have started to address the
task of fully-automated colposcopic image analysis [10], [11].
Preliminary segmentation efforts for the cervigrams within
the NIH database were recently introduced [12]–[14]. The
works to date usually focus on one specific analysis task (e.g.,
single landmark or tissue) or show initial results, with a small
number of image examples. Several of the works published in
this area, as well as companies working in related fields, are
focusing on developing novel acquisition protocols to enforce
a more controlled imaging environment, and to facilitate the
image analysis tasks by utilizing very advanced imaging or
fusion of imaging modalities. One such example is the LUMA
imaging system [15], a commercial device that has recently
been approved by the U.S. Food and Drug Administration as an
adjunct to colposcopy. This system combines computer image
analysis of video of the cervix, along with fluorescent light
imaging and broadband white light imaging, in an integrated
real-time algorithm for tissue classification.

The above approaches are not suited for handling an existing
large image repository, such as the NIH cervigram archive. For
the NIH archive, the analysis tools need to be robust enough to
handle the large variability known to exist across images; it is
highly desirable, however, that the tools be general enough to
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Fig. 2. ROI detection. (a) Original cervigram. (b) Clustering in the selected feature space: � (smoothed) versus�. Darker gray pixels (purple in color version) are
associated with the ROI. (c) Detected ROI outlined in white.

facilitate analysis across additional, similar archives of cervix
images. These are the challenges of the current work; we focus
on the tasks of cervix boundary segmentation, os detection, and
the important preprocessing step of specular reflection elimina-
tion.

C. Proposed Framework

We present an automated, multistage procedure for cervigram
segmentation and landmark extraction. Each stage targets a spe-
cific region or landmark within the cervigram. We identify and
use features that we have found to be effective for each partic-
ular processing step. We use unsupervised modeling at various
stages for feature clustering and classification. Using unsuper-
vised clustering enables an adaptive, image-specific analysis,
within the large image archive. In addition it eliminates the need
for image normalization across the archive and for multiexpert
labeling, which are critical for a supervised learning approach.
In addition to statistical modeling, we use curve evolution tools,
with novel energy functionals that we derived specifically for the
cervigram data.

In a preprocessing stage (Section II), a coarse region-of-in-
terest (ROI) is extracted from the given input image. The de-
tected ROI is intended to exclude as much irrelevant informa-
tion as possible, while making sure that the entire cervical area
is included. A second important preprocessing step addresses
the problem of specular reflection. Following the preprocessing
stage, we are prepared to algorithmically delineate the cervix
boundary (Section III). We propose a general model that incor-
porates edge, region, and shape information. The relevant edges
in the image are described by the local curvature of the cervical
surface. An algorithm for the detection of the os landmark is
described next (Section IV). A geometric measure of local con-
cavity of the gray-level image surface is used in conjunction
with statistical modeling for the detection of the os region. Ex-
periments and results are presented in Section V. A discussion
concludes the work in Section VI. Parts of our work have been
recently presented [12], [16], [17].

II. PREPROCESSING STAGE: EXTRACTING ROI AND REMOVING

SPECULAR REFLECTION ARTIFACTS

The first two steps of the cervigram analysis framework are
preprocessing steps essential to the successful computerized
analysis of cervigrams. First, irrelevant image regions are dis-
carded by an automated ROI detection algorithm. In the second
step, regions with specular reflection (SR) are detected and

eliminated. Handling SR is important in a variety of medical
applications, and an extensive overview can be found in [17].
Here we present the main algorithm and its results within the
overall framework of our goals for processing of these cervix
images.

A. Initial Automated ROI Detection

The cervix region is a relatively pink region located near the
image center. For an initial delineation of the cervix, we use two
features: the color channel of the color space (the higher
the value of , the “redder” the pixel color) and the distance
of a pixel from the image center. The feature provides spa-
tial information and supports the extraction of continuous re-
gions within the image plane. The color channel is initially
smoothed in order to eliminate small details and the two fea-
tures are normalized by their maximum value in order to obtain
a similar range of values.

The image is separated next into two clusters in the 2-D (
) feature space; we use Gaussian mixture modeling, initial-

ized by a K-means procedure, as a statistical clustering method-
ology [18]. The cluster that has the highest -mean and the
lowest -mean is selected. The ROI is chosen as the largest con-
nected component within the pixels associated with this cluster.
Postprocessing of the ROI includes morphological boundary
smoothing and elimination of small holes. Morphological oper-
ations are performed with a small structuring element of a fixed
size. An example of the clustering process and final ROI is pre-
sented in Fig. 2.

Criteria for judging an acceptable ROI are that it should ex-
clude irrelevant information such as medical equipment, frames,
text, and noncervix tissues (Fig. 1), while preserving the cervix
region in its entirety. These requirements are largely satisfied in
all the cervigrams analyzed in the current work. After the ROI
has been detected, all subsequent processing takes place in the
ROI interior; hence, confusing patterns and textures in the cervi-
gram periphery will be ignored and will not degrade algorithm
performance.

B. Detection and Elimination of SR

SR, or highlights, are small and bright regions on the cervix
surface, which are generated during the image acquisition
process by strong reflectors, such as fluids (Fig. 1), on the
surface of the cervix. These SR artifacts interfere with the
content analysis of the regions surrounding them. The bright
white regions of SR may be confused with lesions, which are

Authorized licensed use limited to: National Instiute of Health. Downloaded on September 4, 2009 at 13:43 from IEEE Xplore.  Restrictions apply. 



GREENSPAN et al.: AUTOMATIC DETECTION OF ANATOMICAL LANDMARKS IN UTERINE CERVIX IMAGES 457

Fig. 3. Identification of SR. (a) Original cervigram (cropped around the ROI).
(b) Candidate SR regions (black). (c) Final identification of SR (black).

usually relatively bright. Furthermore, the strong gradients
created by SR amplify the local contrast, causing potentially
erroneous results in any further processing that incorporates
gradient or contrast measures. Reliable identification of SR is
therefore essential.

We present a description of the proposed algorithm for SR de-
tection and removal from the cervigram images (see also [17])1.
Modeling of SR pixels within an image using statistical tools
is a difficult task, since the number of pixels belonging to SR
regions is extremely small relative to the image size. SR pixels
tend to be associated with other clusters, rather then being recog-
nized as a separate cluster. To address this problem, we propose
a two-stage process in order to model the unbalanced clusters.
In the first stage, candidate SR regions are detected by using
thresholds of high brightness and low color saturation as
suggested in [19]. In the second stage, the candidate SR mask
is further refined by selecting only the pixels in the vicinity
of strong gradients. Pixels within the candidate regions form a
subset of the entire image pixel set, as shown in Fig. 3(b). Within
this reduced set, the amount of SR and non-SR pixels is more
balanced, and the two modes can be statistically modeled as a
mixture of Gaussians.

Our experiments suggest that SR pixels are optimally mod-
eled by two Gaussians. One represents the brightest, almost
white pixels, that have lost most of their chromatic information.
The second Gaussian represents the less bright pixels that retain
some of their original color. The non-SR regions are modeled
by two additional Gaussians to account for various tissue types.
Thus, an overall mixture of four Gaussians is used to model the
candidate regions. Following the modeling stage, pixels corre-
sponding to the two Gaussians with the highest mean intensities
are selected as the SR pixels. Fig. 3(c) shows the final set of SR
labeled pixels following the statistical modeling and segmenta-
tion.

In the processing steps that follow, the SR pixels are usually
ignored. Note that for some purposes it may be desirable to fill
in the “holes,” i.e., to introduce new pixel values for the black
pixels in Fig. 3. For example, a filled-in image may also be of
value to the clinician for diagnostic purposes, to eliminate the
visual distraction of bright SR; in this case, it would likely be de-
sirable to also display the original image and/or the image with
SR removed, but not filled in, so that the artificially-created re-
gions would not be confused with real tissue. We use a filling
scheme that eliminates the strong gradients associated with the
SR, while preserving the original texture. In this scheme the

1Available online at http://www.eng.tau.ac.il/~hayit/

average color of the surrounding pixels is propagated into the
specular regions, creating a smooth filling of the image. This ap-
proach is based on the observation that the highlights (the SR)
formed on the moist surface of the cervix are very small. The
color underneath the highlights is assumed to be nearly constant
and similar to the color of the pixels in the immediate surround-
ings. The SR detection and elimination process is evaluated in
[17]. Image examples are presented in Section V-C.

The output of the preprocessing phase of the proposed frame-
work is a smaller-size image that contains the cervix region and
a set of labeled SR pixels. The following processing steps an-
alyze this generated image further, towards the accurate delin-
eation of landmarks of interest.

III. CERVIX BOUNDARY DETECTION

The ROI extracted in the preprocessing step is coarse and
often includes large parts of the vaginal region. An additional
step is required in order to refine the detection quality of the
cervix boundary. Various segmentation methods can be used
for this purpose, including region growing and active contours.
In region growing [20] a region is defined via propagation of
similar neighboring pixels. Two scenarios using region growing
can be defined in the cervix boundary detection task. In the first,
the region is propagated from a single point located in the center
of the initial ROI. The selection of adequate features for the
propagation is not an easy task, as different images will require
a different set of features in order to advance the region from
the center of the cervix to its boundaries. The region growing
can be disrupted by other tissues within the cervix. In a second
scenario, multiple points on the boundary of the initial ROI can
be used as seed points and propagated inwards. The boundaries
generated in this way cannot be restricted by any smoothing or
shape constraints.

Segmentation that combines edge and region information can
be achieved using an energy minimization techniques via the
active contour framework. This framework can be subcatego-
rized into snakes [21] and level set [22] methods, two different
schemes to carry out the contour deformation process. A re-
view and comparison between different energy functionals can
be found in [23]. A main conclusion of the review, in which
both methods were evaluated on a set of different medical im-
ages, was that the integration of forces from different energy
functionals may lead to better segmentation results. The main
advantages of such methods, as compared to region growing,
are their ability to integrate local and global information and
to account for both region and edge features, while preserving
smoothness of the boundaries.

In the current work energy minimization via active contours
is used in order to refine the initial ROI so that it matches the
actual cervix boundaries more closely. The main contribution
of the current work is the energy functional used, that consists
of forces and features adequate for the task of cervix boundary
detection. Region, edge, and prior shape information are all used
for this purpose. We use the implicit implementation via level
sets. Implementation via the parametric snake mechanism may
be possible as well.

In an active contour framework the image is considered as a
function where is the image domain.
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The segmentation problem is mathematically formulated as the
search for a contour in the image, which
is optimal with respect to some predefined integral measure,

, also called the energy functional. Formally, this problem
is stated as: . In our work the energy func-
tional consists of two terms: a data term, and a shape
prior term, . In the following sections, we present a
full description of the curve evolution process. The data term is
described in Section III-A. The prior shape term is described in
Section III-B. The combination of the two terms is discussed in
Section III-C.

A. Curve Evolution Based on Image Data

The data term is based on the following general integral mea-
sure: , which
imposes constraints on the contour, as well as on region proper-
ties inside and outside the contour.

The extremals of the chosen energy functional are identified
by the Euler-Lagrange equation: and are found
by gradient descent in a level set implementation [22]. In this
level set formulation a closed curve is represented implicitly
by embedding in a higher dimensional function , where

is its zero set, .
The data term in the current work is based on a curve evo-

lution functional that incorporates edge and region-based infor-
mation, as suggested for fast edge integration by Kimmel [24].
The compact representation of the level set formulation is the
following curve evolution equation:

(1)

where is a gray level function of the image and is the level
set function.

The first term of (1) is the weighted region term, which ad-
vances the curve according to a scalar weight function, .
The second, robust alignment term, influences the solution curve
to align with edges within the image. The third term, which
we refer to as the GAC term, is derived from the theory of
Geodesic Active Contours. It attains low values for the por-
tions of the contour that overlap image edges, thus preventing
these portions from further evolution. In this term, the func-
tion is an inverse edge indicator, usually of the form

. The fourth and final term is the min-
imal variance term, which attempts to separate the foreground
and the background of the image with respect to their relative
mean values. The two constants, , , are calculated as the
mean intensities in the interior and the exterior of the contour,
respectively.

A direct application of the level set formulation of (1) for the
detection of cervix boundaries was experimentally found to be
ineffective; we attributed this to the presence of irrelevant edges
within the cervigram that are formed by folds of surface tissue
and by the various tissues within the cervix. These edges in-
terfere with the curve attraction to the cervix boundaries. For

this reason, we have modified the original formulation of (1) to
adapt to the unique characteristics of the cervigrams. We note
again here the importance of the initial preprocessing to crop the
image to the coarse ROI. This ensures that the strong edges of
the image frame and of the medical instruments do not attract
the evolving curve. This curve is initialized as the boundary of
the coarse ROI, which is always larger than the desired final con-
tour. The weighted region term (term 1) is defined as ,
with being the iteration number, so that it will have decreasing
influence over time, i.e., as the number of iterations increase.
This force is set negative to ensure that the contour moves in-
ward from its initial state. The minimal variance term (term 4)
uses the color channel (of the color space), to
represent the cervix region’s pink coloring. It is assigned a very
low weight to reflect the fact that the color difference between
the interior and exterior of the cervix is usually not significant.

The multitude of irrelevant edges in the cervigram image
makes the gradient-based terms (robust alignment and GAC,
terms 2 and 3) inappropriate for the task of cervix boundary
detection. We propose an alternative edge indicator, based on
the cervix convexity. Using convexity as a characterizing feature
is motivated by the observation that most of the cervix bound-
aries are outlined by folds of surface tissue that form narrow
valleys and are distinctively concave. The boundaries are easily
detected by their largest positive principle curvature, . Edges
generated by the color transition between two different tissue
types are expected to have strong intensity gradients but low
curvature; thus, the presence of different tissue types is not ex-
pected to interfere with the curve evolution for cervix boundary
detection.

The principle curvatures measure the maximum and min-
imum bending of the image surface, , at each point [25].
The two principal curvatures and directions are obtained as the
eigenvalues and eigenvectors, respectively, of the following
matrix:

(2)

where and are related to the first and the second funda-
mental forms, respectively, and are given by

(3)

(4)

The largest principle curvature, , and its direction are
next used for the generation of the curvature-based vector field
of the new edge indicator. The feature describes both con-
cave (inward bending) and convex (outward bending) regions,
corresponding to positive and negative values, respectively. The
cervix boundaries are concave; therefore, we adapt the fea-
ture to favor detection of only concave regions. Specifically, we
normalize to lie in the range between 0 and 1, such that con-
cave regions will have near 1, and convex regions will have

near 0. This adapted is defined by

(5)
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Fig. 4. Curvature-based boundary indicators. (a) Smoothed intensity image of a cropped cervigram. (b) Scaled principle directions overlaid on a map of the
normalized principle curvature. Concave regions—bright. Convex regions—dark. (c) Zoom-in on one of the strong edges in (b).

The unit vector of the principle direction is scaled by
the associated , thus emphasizing directions of concave
regions and suppressing directions of convex regions. The
curvature measures are computed on a smoothed version of the
input cervigram in order to eliminate small-scale variations.
The resulting boundary indicators are illustrated in Fig. 4. In
Fig. 4(b) and (c) the scaled principle directions are overlaid
on a map of the normalized principle curvatures. A correlation
can be seen between regions with strong values (bright) and
small values (dark), with concave and convex cervigram
regions, respectively.

We propose to use the normalized curvature feature, , and
its associated principle directions, , to modify the gradient-
based terms (robust alignment and GAC) of (1). The GAC in-
verse edge indicator function is replaced by

(6)

The robust alignment term is replaced so that it is driven by
the vector field of the principle curvature direction , scaled by
the normalized curvature. The modified alignment term is

(7)

The new curvature-based level set formulation of the data
term is

(8)

where are the energy functional tuning parameters and
is the -color channel of the color space.
Fig. 5 shows the advantage of using curvature features over

the more commonly used intensity gradients. Two examples (I
and II) are presented. The input images with the ground truth
regions marked by experts are shown in (a). The manually
marked cervix boundary, that serves as our ground truth, is
shown as the surrounding curve (yellow). The automatic cervix
boundary, found with the curvature-based functional, is shown
on the original image as the inner curve (red), as shown in (b).

Fig. 5. Two cervigram examples (I) and (II). (a) Original cervigrams with tis-
sues of interest marked. (b) Initial coarse ROI boundary (outer curve—green).
Cervix boundary found using the curvature-based edge indicator (inner
curve—red). (c) Cervix boundary found using the intensity gradient edge indi-
cator (inner curve—red). Initial coarse ROI boundary (outer curve—green). (d)
Curvature-based boundary contour (red) overlayed on the principal curvature
function. Edges with greater relevance attain high values (white). (e) Intensity
gradient function overlayed with the gradient-based boundary contour (red).

The same curvature based contour, marked on the principal
curvature function, is presented in (d). The automatic cervix
boundary, found with the gradient-based functional, is found as
the inner curve (red) shown on the original image, in (c). The
same gradient-based contour, marked on the intensity gradient,
is presented in (e). The boundary of the coarse ROI, that serves
as the initial condition for curve evolution, is the outer curve
[green in (b) and (c)].
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In example I, the AW lesion (blue) causes a color transition
between the tissues. This transition introduces an intensity gra-
dient (e), which attracts the solution curve in (c). The curvature
feature (d) does not exhibit positive response to this particular
edge, and thus the resulting curve in (b) remains aligned to the
cervix boundary which is well defined by a prominent response
in the curvature function.

In example II, the cervix boundary is defined by valleys that
yield a very strong positive response in the curvature function
(d). The curvature-based contour closely follows this response,
resulting in an accurate cervix segmentation (b). The gradient
based curve, on the other hand, is easily distracted by the regions
that have stronger gradient magnitudes then the actual cervix
boundary (c).

It is important to note that a curve evolution process is
governed by all of the terms in the defined energy functional
[eq. (8)]. Two of the terms are closely related to the concavity
measure. When no strong concavity response is present in the
vicinity of the curve, it is influenced by the minimal variance
and the balloon terms. This results in a boundary that mostly,
but not entirely follows the concave valleys.

B. Curve Evolution Based on a Prior Shape Model

Using the data term of the energy functional [eq. (8)] the
detected cervix boundary is optimal with respect to color and
curvature-based edge features. When observing human expert
markings, an evident commonality is that the cervix boundary
is marked as smooth and circular. The curve evolution frame-
work is next adapted in order to accommodate this prior shape
information and further refine the detection quality of the cervix
boundary.

Applying prior shape information to image segmentation
is a well studied problem. One popular methodology uses
deformable models learned from a training set of registered im-
ages [26]–[28]. Such a training set is not available in the current
case, so we instead incorporate circular shape information and
do not require cross-image modeling or registration. We rely on
a method based on the distribution of a shape feature, as given
in [29]. We incorporate a shape-based energy term into the
curve evolution model that penalizes the difference between the
feature distribution of a given curve and the feature distribution
of a prior reference curve. It can be shown that such distribu-
tions capture the intuitive similarity of shapes in a flexible way,
while being invariant to shape transformations [30]. We start
with a brief description of the method as presented in [29]. We
then present specific modifications used for the cervix region
segmentation task.

The shape distribution is defined as the cumulative distribu-
tion function (CDF) of feature values measured uniformly along
the shape boundary. Let be a continuously defined feature
along the curve , and be a variable spanning the range of
values of the feature. The CDF of , , is defined as

(9)

Here is an indicator function, which is 1 when the in-
equality is satisfied and 0 otherwise. When it is meaningful to
exhibit the particular curve for which is computed, we

Fig. 6. Internode distances between points within the sampled set �, on the
prior circular model.

will write . The shape-based energy term, , is
defined as

(10)

where the prior shape information is captured in the target dis-
tribution .

The shape descriptor that we use to describe the circular shape
prior is termed the “internode distances” descriptor. This de-
scriptor captures the CDF of the normalized distances between
all nodes within the set of nodes , sampled uniformly along
the curve. The curve evolution minimization equation for the
internode distances feature is [29]

(11)
where is the parameterized curve as a function of the arc-
length with , is a vector with co-
ordinates and is the outwards
normal at . The normalized internode distance be-
tween nodes , is defined as

(12)

Fig. 6 illustrates the internode distances between a single point,
, and the rest of the points, , within a sampled set

( includes only eight points for illustration purposes). The his-
togram of the internode shape descriptor, , is constructed
out of all the available (normalized) distances between such
node pairs.

We implement the level set formulation for the shape term as
follows:

(13)

where is computed for pixels along the zero level set
(the evolving curve ) and is diffused using a simple Gaussian
filter [ in eq. (13)] of size 5 5 and . The sampled set

in our implementation includes all the points along the zero
level set of the evolving curve.

C. Combination of the Data and Shape Terms in the Curve
Evolution Process

The data and shape terms, and , are combined
in a two-stage procedure. The first stage uses the data term
to evolve the initial, approximate ROI to better fit the cervix
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Fig. 7. Incorporating prior shape information in the curve evolution functional.
(a) Manual marking of the expert (blue). (b) Cervix boundary results: initial
ROI (green). Boundary detected using data and shape terms in a single-stage
procedure (red). Boundary detected using the two-stage procedure (white). (c)
Curvature feature map.

region. We will call the curve that is output from this stage
the data-driven curve. The second stage combines the data and
shape terms to further refine the detected boundary and obtain
a smoother, more circular shape.

This two-stage procedure was found necessary by experimen-
tation: if the two terms are used simultaneously to evolve the
curve in a single-stage procedure, the resulting cervix boundary
is larger than desired. The data term is attracted to local concav-
ities which are present between the initial ROI and the actual
cervix boundary. The shape term tries to generate the optimal
bounding circle that includes these concavities, thus preventing
the curve from following the data inwards in favor of a more
circular shape. A comparison between the two-stage procedure
and the simultaneous activation of the data and shape terms, in
a single stage, is presented in Fig. 7. Fig. 7(a) shows the med-
ical expert-marked boundary (blue). Fig. 7(b) shows the initial
ROI (green), along with the boundary detected using data and
shape terms in a single-stage procedure (red) and the boundary
detected using the two-stage procedure (white). Local concavi-
ties can be found between the initial ROI curve and the desired
cervix boundary [bright values in Fig. 7(c)]. The curve gener-
ated by the single stage procedure (red) is attracted to the con-
cavities that are closest to the initial ROI, with the shape term
enforcing a circular shape based on these concavities. It was em-
pirically found that parameter tuning of within-term forces and
between the two terms does not improve this outcome. The sug-
gested two-stage procedure (white curve) results in a curve that
matches more closely with the expert markings.

An important issue is the relative weighting of the data and
shape terms in the second stage of the curve evolution process.
Experiments have shown that equally weighting the two terms
causes the data-driven contour to overinflate as it tries to match
the circular prior model. In order to avoid this undesirable ef-
fect, the contour is restricted from evolving outwards beyond a
predefined distance limit from the data-driven curve (which is
in good proximity to the desired cervix boundary). This is done
by using the following equation:

(14)

where the parameter, , locally weights the shape term
per pixel. The local weights, , are defined using the
signed distance transform, , that computes the minimal

distance between a pixel and the data-driven curve (pos-
itive distances interior to the curve and negative distances exte-
rior to the curve). The weighting function, , is defined
as

if
otherwise

(15)

where specifies the distance limit and is assigned a small value
of pixels, and is a parameter that controls the general
influence of the shape term. The proposed weighting function
suppresses the influence of the shape term on pixels positioned
outside the data-driven curve. Note that the weights are com-
puted once per data-driven curve.

Fig. 8 illustrates the effect of the local weights on the
boundary detection quality. The data-driven curve is marked
in green. The result for equally weighting the shape term is
marked in red. The result for locally weighting the shape term,
is marked in white. The manual markings of the expert are
presented in blue. It can be observed that the equally-weighted
curve (red) inflates the input data-driven curve (green). The lo-
cally-weighted curve (white) is smoother and better resembles
the expert markings. This curve is shown to outperform the
data-driven curve, thus supporting the inclusion of the shape
term in the curve evolution model.

IV. OS DETECTION

The opening to the neck of the uterus is called the external
os (here simply the os). The size and shape of the os varies
widely with age, hormonal state, and whether the woman has
had a vaginal birth. In women who have not had a vaginal birth
the os appears as a small, circular opening. In women who have
had a vaginal birth, the os appears wider, more elongated, and
irregularly shaped. The os is an important anatomical landmark
within the cervix region.

The detection of the os is not straightforward, since its shape,
color and relative location in the image varies significantly
across the images. Furthermore, its color is often similar to the
color of the surrounding tissue (Fig. 9). However, one charac-
teristic is consistent: the os region is always concave. Based
on this observation, we introduce a geometric measure of local
concavity for detection of the os. Concavity is related to the 3-D
shape of an object. Since 3-D data of the cervix is unavailable in
this image database, we use as a surrogate a geometric measure
of local concavity for the gray-level image surface (introduced
by Tankus et al. [31]). The local concavity operator that we use
produces an image, termed , which has a strong response
at concave or convex regions. Based on the image, we
propose the following os detection algorithm: 1) compute
the image; 2) detect high-intensity regions within
(concave regions); 3) select as the os, the largest region that is
close to the cervix center. We next elaborate on the proposed
scheme, focusing on the computation of the image.

The detects surface patches that are locally concave or
convex by detecting the ray of discontinuity in the gradient ar-
gument, , of the image function, . We describe
below the details of the computation of the image (fol-
lowing [31]).
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Fig. 8. Local weights effect on boundary detection quality for two cervigrams examples (I)–(II). Left image—manual markings of the expert (blue). Right
image—boundary detection results. Data-driven curve (green). Equally weighted shape term (red). Locally weighted shape term (white).

Fig. 9. Examples of the os in different cervigrams.

The gradient argument, , is defined as

(16)

where the 2-D function is computed by

if
if
if

(17)

In order to obtain , a local convexity operator is
defined first. is the derivative of the gradient argument in
the direction

(18)

Fig. 10 demonstrates how, for a locally concave paraboloid
structure [Fig. 10(a)], the gradient argument has a strong dis-
continuity on the negative axis [Fig. 10(c)]. Note that the
coordinate system is placed in the center of the paraboloid,
parallel to its axes. This structure can be easily detected by the
convexity operator, [Fig. 10(d)].

The convexity operator will have a strong response (in theory,
infinite) on the negative part of a horizontal axis of a convex
or concave patch. Its response to linear gradients or abrupt
changes in the image are much weaker than the response to
convex patches. Note that the proposed operator is insufficient
for the purpose of cervix boundary detection (Section III), since
it does not provide the direction and magnitude of principle
curvature directions. However its stability and robustness make
it very suitable for the os detection task.

The convexity operator may be extended in order to respond
to other axes of the paraboloid [31]. In the current work, we

Fig. 10. (a) Synthetic concave paraboloid. (b) Intensity gradients, zoomed on
the negative �-axis. (c) Gradient argument, ���� ��. (d) � . (e) Rotated ver-
sion of � —positive �-axis. (f) � .

Fig. 11. (a) An example cervigram. (b) Resultant � image: the bright
regions (high response values) correspond to concave regions within the
cervigram.

are interested in detecting the os region, which is circular or
nearly horizontal, thus a strong response along the entire -axis
is desired. This can be achieved with the image, which is
an extension of . The image is obtained by rotating
the original image, , by degrees, calculating the and
then rotating the result image back [Fig. 10(e)]. The received
response is then summed with the original [Fig. 10(f)].

The image for an example cervigram is illustrated in
Fig. 11. It can be seen that there is a strong positive response
(light gray) for regions that look like concave horizontal cylin-
ders. For the case of horizontal convex patches, the response is
negative (dark gray).
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Fig. 12. Os detection process. (a) Mask of concave regions. (b) Distances of the mask pixels from the cervix boundary. White color denotes the highest distance
value. (c) Histogram of the distance feature. �-axis: distance in pixels; �-axis: number of pixels per distance, within the mask. (d) Labeled mask pixels. The grey
pixels were classified as close to the boundary, the white pixels as close to the center. (e) The cervix image with the center of the os marked by the black diamond.

TABLE I
SUBSETS WITHIN THE CERVIGRAMS ARCHIVE

Multiple regions within the image achieve a high value of
. Most of these regions are located on the horizontal bound-

aries of the cervix and need to be discarded. The os detection
scheme is described next and illustrated in Fig. 12. Initially
the response is automatically thresholded to generate a
mask of candidate concave os regions [Fig. 12(a)]. Only the re-
gions inside the previously detected cervix boundary are con-
sidered. Next, the distances between the pixels within the mask
and the cervix boundary are computed by means of the dis-
tance transform [Fig. 12(b)—dark values correspond to small
distances]. It can be seen from the histogram of the distance
feature [Fig. 12(c)], that the pixels are naturally divided into
two groups, one close to the cervix boundary and one close
to its center. The pixels are clustered into these two groups
by the K-means algorithm, producing the result in Fig. 12(d),
where two values are shown: grey represents pixels close to the
boundary and white represents pixels close to the center. The
largest segment that has a majority of pixels associated with the
center cluster is selected and the center of this segment is marked
as the os landmark [diamond in Fig. 12(e)]. Os detection exam-
ples are shown and evaluated in Section V-B.

V. EXPERIMENTS AND RESULTS

Cervigram images were collected in the form of 35-mm color
slides which were then digitized at 1660 dpi, compressed with
40:1 JPEG. Boundaries were marked and labeled with the NLM
Boundary Marking Tool [32]. Three image sets are used in the
experiments, as summarized in Table I. In and the
boundaries for the cervix and the os were marked by a single
medical expert with specialized experience in gynecological
oncology. includes cervigrams in which two experts
(not necessarily the same experts across all of the images)
have marked the cervix boundary. Qualitative and quantitative
results of cervix boundary detection and os delineation are
provided next.

TABLE II
QUANTITATIVE RESULTS FOR BOUNDARY DETECTION: CLUSTERING-BASED

SCHEMES [14] VERSUS THE CURVE-EVOLUTION PROCEDURE.
AVERAGE RESULTS ARE PRESENTED (��� )

A. Cervix Boundary Detection Results

We start by comparing the performance of the curve evo-
lution process as presented in this work to clustering-based
schemes for cervix-region extraction. One such scheme, which
performs clustering in the feature space, was used in
the initial ROI detection (Section II-A). Several variations
on the features used, feature normalization, and clustering
techniques, were recently quantitatively compared in [14],
using the same NIH cervigram test data ( ). The best
clustering-based overlap results from [14] are presented in
Table II and compared to the average curve-evolution overlap
results of the current work. In the quantitative evaluation gen-
erated contours are compared to expert-based markings, using
multiple performance measures. Specifically, several overlap
measures were used: the Dice measure: ,
the Sensitivity measure: , and the False Positives
(FP) measure: , with being the area of the auto-
matically segmented region, the expert segmentation, and
its complement (the area outside the expert marked boundary).
The results in Table II show a considerable improvement in the
Dice and the FP measures using the curve evolution process.
Sensitivity results slightly decreased, remaining at a strong
level. These results indicate a more accurate delineation of
the cervix region by the curve evolution process. Nonrelevant
tissues, outside of the cervix region, are better defined, which
is an important step for further cervix analysis.

The effectiveness of the prior shape model for refinement
of the initial data-driven segmentation in the curve-evolution
process, is explored next. In this experiment both and
are used. A set of five cervigrams, randomly selected from ,
are used for the selection of algorithm parameters. In the first
step of the curve evolution process we set the parameters of (8)
to: ; , ; . The time step was set
to: . The addition of the shape term in the second step
requires a modification of the weights of the curvature-based
forces within the data term to: ; . Number of
iterations in the second step were limited to 20. We found that
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Fig. 13. Cervix boundary detection. Contour based on color and curvature features—marked in green. Final contour, following the shape-based refine-
ment—marked in red; Expert markings imposed in blue. Hausdorff (�), Dice (�), Sensitivity (�), and False Positives (�� ), for the data-driven (�) and the
shape-based (�) contours, are listed under corresponding cervigrams.

these modifications were necessary to prevent the curve from
shrinking into the cervix region in cases where its initial posi-
tion is located within smooth regions and is already close to the
desired result. The parameter in (15) was set to . It
is important to note that once defined, the parameters were kept
constant across all images in the test set.

Fig. 13 displays examples of cervix boundary detection. The
data-driven contour generated in the first step of the curve evolu-
tion process is marked in green and the final result, following the
refinement with the prior shape model, is marked in red. Manual
markings of the expert are shown in blue. Quantitative results
are listed under each image example, using the overlap measure,
along with the Hausdorff distance [33], which is a maximum
surface distance. The Hausdorff distance defines the largest dif-
ference between two contours (measured in pixels) and is a good
indicator for shape resemblance. A smaller Hausdorff distance
corresponds to more similar contours. For the Hausdorff results,
note that the images are of approximately 1500 2500 pixels.

Several observations can be made. The contours are smoother
and more convex when the shape term is added, as desired. They
exclude more irrelevant regions within the cervix. Good simi-
larity to the expert markings can be seen in most of the cases.
These facts are reflected by the quantitative evaluation, where a
significant improvement in the FP and the Hausdorff measures is
achieved. The sensitivity results of examples (a)-(e) attain high
values, as they include most of the expert’s markings. These sen-

sitivity results are similar for the two contours being compared.
Example (f) shows an exceptional case, where the sensitivity
decreases due to the shape prior constraint. In this example the
data-driven curve is already close to, or located within the mark-
ings of the expert. Advancing the curve further using the cir-
cular shape prior generates a final smaller contour, as there are
no color or curvature features that can prevent the curve from
shrinking.

Table III summarizes average results of cervix boundary de-
tection for and images, with and without the prior
shape model. The Dice measure shows a small improvement
and the sensitivity values are similar. These results indicate that
the data-driven curve is already in good proximity to the de-
sired contour and that regions within the cervix are handled well.
The Hausdorff distance shows a substantial improvement when
adding the shape term, thus indicating a better shape resem-
blance of the generated contours to the expert’s markings. The
FP measure shows a considerable improvement, corresponding
to a strong reduction of nonrelevant tissues. This reinforces the
addition of the shape term to the curve evolution process. Sim-
ilar results are achieved for both sets.

In the final experiment the results of the suggested frame-
work were compared to the markings of two experts, as avail-
able in . Fig. 14 presents several example segmentations.
The manual markings of the two experts are shown in green
and blue. The results of the algorithm are imposed in red. The
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Fig. 14. Automated boundary detection (red) as compared to the markings of two experts (green and blue). Listed are the corresponding Dice and Sensitivity
measures between the two experts (���� � ���� ) and between the algorithm and expert 1 and expert 2 (���� � ���� ����� � ���� � respectively).

TABLE III
QUANTITATIVE RESULTS FOR BOUNDARY DETECTION WITH AND

WITHOUT A PRIOR SHAPE MODEL (��	 , ��	 )

Dice and the Sensitivity measures, computed between the two
experts and between the algorithm and each of the experts, are
listed below corresponding images. The sensitivity between the
experts was computed twice per image and averaged, using each
of the experts as the ground truth.

Cervigrams (a)–(c) are examples of strong agreement be-
tween the expert markings. In these cases the automated cervix
delineation results are consistent with these of the experts. In
examples (d)–(f) there is a strong disagreement between the
expert markings of the cervix region. The algorithm results are
close to one of the experts, or within the range of their mark-
ings. Table IV summarizes the results for images. Similar
Sensitivity measures can be seen between the two experts and
between the algorithm and the experts. This indicates that
most of the cervix region, as marked by each of the experts, is
detected by the algorithm. The average Dice result between the
two experts is 0.88. The standard deviation of indicates a
strong variability between the experts. The average Dice mea-
sure between the algorithm and the experts is 0.81. Viewing the
average Dice results between the experts as a desired objective,
the automated algorithm achieves 92% of this objective.

TABLE IV
AVERAGE DICE AND SENSITIVITY MEASURES FOR A COMPARISON BETWEEN

THE ALGORITHM AND THE RESULTS OF TWO EXPERTS—100 IMAGES (��	 )

B. Os Detection Results

Example results for os detection are presented in Fig. 15.
In each image the os region is manually marked by the ex-
pert (white contour). The result of the automated os detection
is marked by a green diamond.

Visual inspection indicates that in most cases the automati-
cally detected os is located within the manually marked os re-
gion. Cases can be found where the os is misdetected, such as
the right-most example in Fig. 15. In such cases, a prominent
concave region that is located in the central part of the image
does not necessarily correspond to the os. These misclassifica-
tions arise from a noncentered acquisition of the cervix region
or from imprecise detection of the cervix boundaries.

A quantitative evaluation of the os detection process was per-
formed using and , for which a manual delineation
of the os region by a medical expert is available. The minimal
distance between the automatically detected os marker and the
manually segmented os contour was found for each image in the
selected set. A histogram of the distances obtained for the im-
ages in each of the sets is shown in Fig. 16. The distances are
less than 10 pixels in 82% (98 out of 120) of the cases in
and for 79% (123 out of 158) of the cases in . The distance
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Fig. 15. Os detection. Green diamond—automatic os detection. White—expert markings.

Fig. 16. Histogram of the distances between the automatically detected os
marker and the manually segmented os contour. �-axis: distance in pixels.
�-axis: number of images per distance.

of 10 pixels is the approximate width of the os region, as marked
by the expert.

C. Additional Cervigram Analysis Results

Fig. 17 presents an additional set of cervigram images,
along with their automated analysis. Each row corresponds
to a different cervix image. Column (a) shows the original
cervigram with the coarse ROI marked. Column (b) shows the
detection of SR, which is marked in black. Column (c) displays
the same images following SR removal. Column (d) presents
the refined cervix boundary extraction (white) and the expert
marked boundary (blue). In column (e) results of os detection
are given. The automatically detected os center point is marked
in white, with the expert marking in blue.

The coarse ROI detection step (a) is very reliable. Large por-
tions of irrelevant image regions are excluded while no infor-
mation is lost. The detection of the specular reflection (b) was
judged highly accurate in 90% of the cases in one test evalu-
ation by a medical expert [17]; the subsequent filling step (c)
produces a visually satisfactory, mostly specularity-free image.
We note that in some cases small traces of specularities are left.
Such a case can be seen in example (6) where a small bright

spot is present in the upper part of the cervix. In order to handle
such cases, subsequent processing steps, such as the os detec-
tion, include postprocessing steps to discard any false positives
that may be caused by undetected SR. The fact that even small
residues of these bright spots cause misclassifications illustrates
the importance of this preprocessing step.

The cervix boundary detection that is shown in (d) substan-
tially improves the coarse ROI found in (a) by eliminating
additional irrelevant regions that are close to the cervix. Results
are very close to the human expert markings. The use of a shape
prior imitates the human tendency towards marking a smooth,
continuous, circular contour. Examples (2)–(4) show cases
where the automatic contour tends to shrink inwards into the
cervix region. This result is related to the prior shape of a circle
which is currently used. In some cases, such as examples (5)
and (6), the automatically detected boundary is larger than the
boundary marked by the expert, indicating premature stopping
of the evolution process as it evolves inwards from the coarse
ROI boundaries. The os detection step (e) shows good results
in a majority of these images.

VI. DISCUSSION AND CONCLUSION

This paper presents an automated analysis scheme for uterine
cervix images, with an emphasis on the detection of two impor-
tant landmarks: the cervix boundary and the os. The proposed
scheme is hierarchical: it first defines a rough estimate for the
cervix region within the image, and focuses the analysis within
this region. In the second processing step, the specular reflection
artifacts are detected and eliminated. A more exact delineation
of the cervix boundary is then computed, along with detection
of the os region. Each processing step is treated separately, using
appropriate features and specific segmentation algorithms, with
the goal of achieving robustness in the segmentation.

We introduce a novel approach based on geometrical curva-
ture characteristics of the image for detection of the os and of the
cervix boundary. This approach outperforms an existing clus-
tering-based method in the task of cervix boundary detection.
Incorporating prior shape information is shown to further im-
prove the boundary detection quality.

In the proposed system we use an unsupervised approach for
landmark detection. This unsupervised methodology focuses on
each image as a unique entity, and analyzes and clusters features
in the image, based on the specific (unique) content of that par-
ticular image. This approach is useful when a large variability
exists across images in the given archive. In such cases, the
cross-image variability imposes difficulties in learning a model
per landmark type, or tissue type, that will be valid (generaliz-
able) for the entire image archive.
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Fig. 17. Additional results. (a) Original cervigram with the initial ROI marked in white. (b) SR detection—black. (c) Cervigrams following SR filling. (d) Cervix
boundary detection: Automated algorithm—white, manual contour—blue. (e) Os detection: Automatic algorithm—white, manual contour—blue.

Satisfactory results for the detection of the SR, the cervix
boundary and the os, were achieved, thus constituting a good
basis for further analysis of the cervigram content. Consistency
in the results was shown across different image test sets. It
should be noted that SR elimination is an important first step
for a correct identification of the cervix boundary. Moreover,

detection of an accurate cervix boundary is critical for further
landmark extraction. For example, the detection of the os land-
mark is dependent on the identification of its position relative
to the cervix boundary.

The method used in this work for incorporating circular shape
information, has the following advantages: There is no need
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for registration and alignment of the prior shape model and
the evolving curve, as the method is based on the distance be-
tween normalized feature distributions. These distributions are
invariant to scale and rotation and in the case of a circular prior,
computed only once. We are currently working on the incorpo-
ration of the more general, elliptical prior, into this framework.
As the ellipse parameters (aspect ratio of the main axes) are not
known in advance, its feature distribution has to be recomputed
in each iteration. This increases the complexity of the process.
Other methods are currently being developed in order to include
the elliptical prior in a less complicated approach.

Future work will deal with the extension of the system and
its validation in several directions: additional features, such as
color and texture will be explored for the os detection task,
and in the characterization of additional cervix tissue regions;
within-image illumination correction and cross-image normal-
ization schemes will be developed. Finally, we will incorporate
the use of new sets of multiexpert data collected by NCI. Such
data is critical for generating training sets, as well as for thor-
ough computational validation of the system results.
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